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Abstract: Stainless steel is known for its superior corrosion
resistance in industrial applications. In this work, corro-
sion modeling of stainless steel 316L is presented using
artificial neural networks. The experimental setup consists
of a loop containing stainless steel elbow with simulated
seawater of known concentration continuously flowing at a
specific flow rate, thus allowing to study the effect of flow
dynamics and salt concentration on corrosion. Electric
field mapping setup is used to collect the voltage and
current information along with the temperature of the
elbow section. In addition to modeling, characteristics of
the observed scale deposits are also studied in-depth and
briefly reported in this work.

Keywords: corrosion modeling; electric field mapping;
neural networks; scale deposition; SS 316L elbow.

1 Introduction

Pipelines form essential infrastructure of multiple in-
dustries and facilities for the transportation of fluids. They
are used in nuclear power plants, hydroelectric stations,
food processing, oil and gas, and marine industries.
Corrosion, cracks, and defects are usually responsible for

the failure of a pipeline which can lead to serious safety
issues such as leakages, personnel injury, fatalities, envi-
ronmental degradation, and economic impacts like
expensive repairs, costly outage, and production down-
time. Owing to such a magnitude of impacts, it is vital to
ensure stringent asset integrity protocols by regular in-
spection and maintenance. Therefore, inspection, evalua-
tion, modelling, and prediction of corrosion in pipelines
have become major research areas in academia and in-
dustry; see for example Vanaei et al. (2017), Heidary et al.
(2018), Papavinasam et al. (2006), and Xie and Tian (2018),
and references therein.

The service life of pipelines is greatly reduced by corro-
sion, which can be of several types such as, uniform or gen-
eral (Choi et al. 2011), pitting, crevice, intergranular, erosion–
corrosion (E–C), corrosion due to microbial growth, and
environment induced cracking. This paper focuses on
modeling and prediction of E–C using neural networks (NNs)
in stainless steel (SS) elbowdue to theflowing saline solution.
Although SS is a costly and heavy alloy, the advantages of
using it in certain applications and industries outperform the
disadvantages. These include availability of a wide variety of
types and grades providing flexibility of application, resis-
tance to corrosion and UV radiation, durability, strength,
being food-grade, and a good choice for high-temperature
settings, making them a preference in many areas. These
include food and beverage industry as it is resistant to mi-
crobial growth and does not react with the food, and waste-
water treatment equipment due to the ease of cleaning.
Another interesting advantage for the industry is that the SS
equipment holds its resale value in case the operational
needs change or the plant needs to be salvaged. In what
follows, a concise literature review isgiven for thehighlighted
works related to E–C in SS.

Corrosion rate can be significantly reduced with the
formation of a thin passive film on SS surface. However,
due to the impingement of sand or other abrasive particles
in the fluid on SS surface would lead to removal of these
films, thus enhancing corrosion remarkably. This phe-
nomenon is referred to as E–C, and this could lead to severe
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wall thinning if combined with the dynamics of fluid flow.
Moreover, E–C can produce higher wall penetration rates
than erosion or corrosion alone. In this context, Zeng et al.
(2018) studied the semiconductivities of passive films at SS
304 elbow in sand-containing saline solution through a
loop system. The solution contained 3.5 wt% NaCl with
0.9 wt% sand particles (size of 400–500 μm). The effects of
fluid dynamics at the elbow on semiconductivities and
compositions (using spectroscopy) of passive films were
described. Shadley et al. (1996) presented E–C of carbon
steel (CS) elbow as part of the flow loop, in a CO2 envi-
ronment with sand particles. Depending on the fluid ve-
locity, three E–C characteristics were found: protective
scales formation at low velocities resulting in low corrosion
rates, prevention of scales formation at higher velocities
giving higher and uniform corrosion rates, and at inter-
mediate velocities localized points with deep pits were
observed alongwith over-all formation of protective scales.
In addition, a computational model was given for the
prediction of sand erosion in pipes. The levels of environ-
mental conditions beyond which E–C becomes significant
in predicting pipeline material thickness loss were studied
by Hu and Neville (2009). Specifically, pipeline steel (API
X65) degradation was reported due to E–C with fluid con-
taining sand in a CO2 saturated environment. E–C predic-
tion was enhanced by supplementing the empirical,
amechanistic, and computational models with the envi-
ronmental or external factors such as fluid flow velocity,
temperature, and solid loading.

A study which compared the E–C behavior of CS 1018
and SS 304L was given in Khan et al. (2019), for 90° long
radius elbows under slug flow conditions with sand parti-
cles. The results showed a lower surface roughness for SS
compared with CS, four times higher E–C rate for CS than
SS elbow, and higher E–C rate on the upper half of the
elbow compared to the bottom half for both materials.
Therefore, concluding that SS has superior corrosion
resistance properties compared with CS.

Corrosion prediction for SS 316L was reported in Wan
and Saito (2018) under flow-accelerated corrosion (FAC). A
mass transfer study was performed by incorporating a
corrosionmodel in the CFD analysis. The prediction results
for pipe segments with abruptly varying diameters were in
conformance with the measured ones. However, for the
uniform part, the predicted corrosion depth was about 1.3
to 3.5 times the average experimental corrosion depth.

To the best of authors’ knowledge, a comprehensive
artificial NN (ANN) model for the complex process of
corrosion and passive layer formation inside SS 316L elbow
with consideration of flow dynamics and water salinity is
lacking in the literature. In this spirit, this paper presents

first results of such modelling for wall thinning in SS 316L
elbow as part of a loop running saline water with known
concentration and flow velocity. The measurement setup
consisted of electric field mapping (EFM) pins to measure
voltage and current readings, and temperature sensors.
These readings were used to train an ANN to model the
corrosion behavior and the performance was tested. A
detailed chemical and microscopic analysis of scales
formed on the internal surface was also performed, and is
concisely described in this paper.

2 Experimental setup

The setup consists of a state-of-the-art flow loop that is
designed to simulate real-time industrial conditions. The
experimental setup, schematic, and columns layout are
shown in Figure 1. It consists of two centrifugal pumps from
Lowara Company, model number TG334, flow rate (Q)

45 m3/h, head (h) 110 m, OMEGA turbine flow meter
(FTB730), power switch (Eurotherm 2500P Schneider
Electric), Plexiglass pipe section to visually examine the
flowcondition, and elbow section of SS 316L. This section is
3.01 m long with 4 in internal diameter and a nominal wall
thickness (WT) of 6.03 mm. The flow inlet and outlet arms
of the elbow are 1.2 and 1.25 m long (including 0.6 m long
Plexiglass), respectively. Inlet arm, elbow section, and
outlet arm of the pipe elbow are all made of corrosion
resistant SS 316L.

EFM monitor which consists of an array of nonintru-
sive sensing pins, are permanently attached to the elbow’s
surface in the matrix of 16 columns and 7 rows, i.e., a total
of 112 pins, as illustrated in Figure 1(c). These pins do not
penetrate the pipe due to being nonintrusive. A measured
amount of excitation current is injected into the structure
and simultaneous measurements of the voltage pattern are
recorded through these pins. The collected data consists of
a time-series of differential pin voltages (in μV) and the
corresponding array of current shunt measurements (in
Amperes). The resistance of a volume is inversely related to
the WT, i.e., a thinner wall will present a higher resistance
to current flow and therefore generate a higher voltage
drop for the same amount of excitation current. Due to
temperature variations resulting from the fluid flow and
ambient conditions, an additional temperature compen-
sation step is required to account for the change in the
resistivity. This is accomplished with additional pins for
temperature measurements. The setup has the provision of
reading electrical data and compute the remaining WT of
the elbow section, however, this calculation software is not
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provided by the manufacturer. The data is uploaded to
their server, where after several weeks, all calculations are
done and the WT results are provided. This limitation
formed the main motivation to develop a local NN based
model to provide WT readings, in relatively less time, from
the available voltage, current and temperature readings.

3 Materials and methods

To evaluate the impact of simulated seawater on corrosion and scale
deposit, pure dried vacuum (PDV) salt was dissolved well in 1 m3 of tap
water (without sand). Handheld refractometer (REF234) was used to
measure the salinity of the prepared solution, with three concentrations:
3.0, 3.5, and 4.0%. The fluid was supplied from a 2 m3 storage tank, as
shown in Figure 1(a), and circulated using both centrifugal pumpswhich

gave a maximum combined flow rate of 70 m3/hr. Control valves were
used to regulate the flow rates at the pump entrance and exit. The rates
and total flowpumpedwasmeasured using an inline turbine flowmeter.

Experimental data consisted of hourly recorded differential
voltage (ΔV), differential current (ΔI), temperature (T ), and baseline
reading of the pipe WTmeasured with ultrasonic testing (UT) probe at
the beginning. The manufacturer’s server was also fed with this pipe
thickness reading before the start of the experiment. The ANN was
trained with ΔV, ΔI and T as input and the pipe WT returned from the
manufacturer’s analysis software as output data. UT probing at the
end of the experiment showed increased WT due to scale formation
and decrease in WT after scale removal from the pipe, which are
described below.

3.1 Scale formation

Spectroscopic analysis was carried out on the scale deposit sample
extracted from the pipe during cleaning. The composition of water run

Figure 1: Mini flow loop.
(a) Experimental facility, (b) Schematic diagram, and (c) Illustration of the elbowpipe showing positions of 16 columns by 7 rows pin positions.
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through the systemwas found responsible for the formation of scale as
it contained Calcium with a concentration of 291 mg/L. Figure 2(a)
shows the percentage elemental composition of the extracted sample
obtained from scanning electron microscopy with energy dispersive
spectroscopy (SEM-EDS) characterization, whereas X-ray fluorescence
showing the oxide state of the elements (not captured with EDS
analysis) is indicated in Figure 2(b). Fourier-transform infrared spec-
troscopy (FT-IR) spectrum of the aragonite-CaCO3 scale shows
distinctive peaks at 709.1, 854.3, and 1486.7 cm-1 due to the C-O
stretching and bending modes (Figure 2(c)). The sharp peak of X-ray
diffractogram shown in Figure 2(d) is typical of a crystalline com-
pound between 2θ of 25 to 50°. The short peak at 2θ of 35° was unex-
pected and suspected to be foreign materials of impurities in the
sample. High crystalline nature indicates that CaCO3 scale is in
aragonite phase. This was confirmed by comparing the SEM micro-
graph of the sample in Figure 2(a) with that reported in Andritsos and
Karabelas (2003).

3.2 WT monitoring

These readingswere takenwith the UT gauge externally to observe the
change in WT with the progress of experiments. To ensure that sub-
sequent measurements are taken on the same points, the same matrix
as EFMpinswas used. The results are shown in Figure 3(a) for baseline
or referenceWT, after the experiment to assess the deposition of scale,
and after cleaning for wall loss measurement. The collected data
revealed about 3% increase in the WT on average and a maximum
increase of roughly 13% due to scaling. WT data collected after a

thorough cleaning with the high-pressure washer was also compared
with the baseline, revealing an average of 2.6% and a maximum 14%
decrease. These measurements and observations are in conformance
with the results reported in the literature (Ahmed et al. 2012, 2014; El-
Gammal et al. 2010), that wall thinning are severe at the bend
compared with other sections of the pipe owing to sudden changes in
the flow direction and velocities. WT distribution at the center of the
matrix outlay (Row 4) was plotted in Figure 3(b). It can be seen from
the graph that the elbow section thickness increases after six months
of exposure to the solution as a result of the scale deposit on the elbow
wall. The WT reduced below the baseline after cleaning, with
maximum thickness loss recorded around the middle of the elbow
section (Row 4, point 7) of the pipe.

4 Modeling

In this section, firstly a background with the account of
previous works related to corrosion modeling using NNs,
their types and a comparison is given. This is followed by
the description of data sets and NN used.

4.1 Background

In certain applications with complex processes such as
corrosion, modeling is extremely complicated if not

Figure 2: Spectroscopic analysis of extracted scale deposit (a) SEM-EDS (b) XRF (c) FT-IR (d) XRD.
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impossible and out of scope for traditionalmachine learning
algorithms. NNs thus come into play, which are composed of
neurons structured as input, output and single or multiple
hidden layers. These layers form the core for learning hidden
patterns in the available data. The number of hidden layers
andneurons increaseswith the complexity of data. Interested
readers are referred to Gurney (2018) for a detailed discussion
on the basics, working and structure of NNs and left here for
brevity.

A generalized regression neural network (GRNN),
which is a probabilistic NN, was used by Ding et al. (2019) to
model and predict the corrosion potential and current den-
sities of CS samples in soils with different parameters which
directly affect the corrosion rate of steel. Additionally,
sensitivity analysis was done for the soil parameters. Pitting
corrosionof SS316LandEN1.4404waspredictedusingANNs
by Come et al. (2015) and Come et al. (2020), respectively,
while considering environmental conditions. Specifically,
later reported the results in marine environment. For pitting

corrosion in SS, Petković et al. (2017) reported the results of
using statistical and ANN modeling of AISI 316 LVM passiv-
ation process, which is aimed at building a passive protective
layer on the steel surface for biomedical applications.
Passivation parameters and pitting corrosion were used as
parameters for the models. It was concluded that only ANN
gave accurate predictions with low mean relative error
compared with the statistical models. In another study, Paul
(2016) reported on the pitting corrosion of SS 304 by seawater
containing Cl in construction applications. Stochasticmodels
were developed to predict the life of the corroding steel
structure by taking into account the parameters that affect
such a process. Specifically, the parameter that determines
the onset of a leakage, i.e., maximumpit depthwasmodeled,
and it was shown that it mainly depends on the electro-
chemical driving force and the time of elapse.

Recently, a comprehensive reviewwas given in Li et al.
(2020) regarding models for predicting stress corrosion
cracking (SCC) specifically in structural materials used for

Figure 3: (a) Pipe WT color map before the
experiment (top), after the experiment
(middle) and after cleaning (bottom), (b) WT
along row 4 of the pipe.
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nuclear power plants. A number of references reported
therein discussed and presented promising results of using
ANNs for prediction. For specific case of SS 316L elbowwith
very highWT (approx. 80mm) used in the nuclear reactors,
Guo et al. (2017) discussed SCC propagation behavior
through numerical simulations. Artificial defect was
introduced at the internal surface to emulate a real crack.

4.2 Types and comparison of NNs

There are a number of NN types that can be used depending
on the requirements of application (Gurney, 2018). Most
commonly used are perceptron, feed-forward (FF),
convolution, recurrent, Kohonenmaps, and support vector
machines (SVM). Perceptron is the most basic and smallest
NN that does certain computations to detect features in the
input data. Having a simple structure, they are only
capable of implementing linearly separable problems. FF
NNs on the other hand, find applications in more complex
applications such as image processing, computer vision,
and speech processing. They can be further classified into
single and multilayered NNs, where the number of layers
depends on the complexity. Apart from this flexibility, they
can deal with data which contains significant noise, and
are fast and easy to implement. In contrast, Convolution
NNs are complex to design and slow in performance
depending on the number of hidden layers. For sophisti-
cated applications such as text auto-suggest, grammar
checking, text-to-speech, and translation, Recurrent NNs
are used because they are capable to model sequential
data. However, training these NNs can be a challenging
task. Kohonenmaps are used in specialized applications to
recognize patterns in the data, for instance in medical
analysis to cluster data into different categories. SVMs,
which are considered very robust for prediction applica-
tions, analyze the data for classification and regression
analysis.

4.3 Description of the training set

The training inputs are ΔV, ΔI and T, each consisting of an
array with 7 rows and 16 columns following the EFM pin
pattern, collected at a flow rate of 2 m/s and concentration of
40 ppt. The readings were recorded hourly for approximately
twenty days giving 482 measurements for each parameter. In
order to model the input of the NN, each row was opened
separately and concatenated with the next one such that 7
rowswere transformed into a total of (16 columns 7 rows=) 112
series. Figure 4 shows the structure of the first two rows as an
illustrative example of restructuring the data, where the
hours became rows. This implied that the dimension of each
training inputwas 482 by 112 per parameter, resulting in a 482
by 336 matrix for all the parameters.

The targets were remaining WT values measured be-
tween the pin locations, thus resulting in (15 spots between
the pin columns 7 rows=) 105 samples of remaining WT
measured for 482 h as well. Consequently, the dimension of
the targetwas 482 by 105. The datawas distributed such that
70% was used for training, 15% for validation and 15% was
reserved for testing.

White noise with zero mean and standard deviation
5 × 10−3 mm was introduced into the target data (WT)
during training, which was less than 0.1% of the nominal
WT. This was done to prevent near-constant observations
from terminating the training process.

4.4 NN for corrosion modeling

From NNs described above, FF NNwas selected in this study
due to the mentioned advantages. Moreover, it was planned
to start with the basic NN after perceptron, i.e., FF network,
andmove tomore sophisticatedones in case it failed tomodel
the corrosion process. The model was trained under super-
vised learning, since the inputs and output training data sets
were available. The input was denoted as xi, i = 1, 2,…, n

Figure 4: Illustration of data restructuring for NN training.

6 A.M. Memon et al.: Corrosion modeling of SS 316L using ANN



where n=336, each of length 482 resulting in the training
input size of 336 by 482. The input features were subdivided
into three, EI (x1, x2,…, x112), EV (x113, x114,…, x224), and T
(x225, x226,…, x336). The targets were denoted by
yj, j = 1, 2,…,m, where m = 105. Note that m and n are the

number of sample features in the inputs and targets,
respectively.

Neural Toolbox in MATLAB Demuth (2000), provides
means of tuning the network parameters to enhance the
learning accuracy. Some parameters, such as number of
epochs can be chosen by default, while others like number of
neurons and size of hidden layers can be selected by experi-
ence, or trial and error (Alahmed et al. 2019). To measure the
performanceof themodel,meanabsolute error (MAE), defined
in Eq. (1) was adopted. Where N is the number of data points.
This was reported by MATLAB toolbox at the end of the
simulation.

MAE =
∑
N

i=1
|error|
N

(1)

As a starting point, four and three hidden layers, each
having ten neurons were considered based on experience,
however, the NN over-learned and was not able to identify
the WT for test data set in both cases. The number of layers
was then reduced to one and various numbers of neurons
were tried ranging from ten to fifty, however, the NN was
not able to learn the corrosion behavior. Then the number
of layerswas increased to two,while keeping the number of
neurons to ten. The validation performance of 0.53 × 10−3

was recorded at fourth epoch and R values of 0.99,967,
0.99,953 and 0.99,922 were obtained for training, valida-
tion and test sets, respectively. This indicated an excellent
learning capability by the chosen model.

5 Results

To demonstrate the ability of the trained NN model,
Figure 5(a)–(c) shows a comparison between themeasured
and estimated WT values on selected points. Clearly, both

Figure 5: Measured versus estimatedWT. (a) C1-3; (b) C8-3; (c) C13-6. Error betweenmeasured and estimatedWT. (d) C1-3; (e) C8-3; (f ) C13-6.
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follow similar trends, sloping down from left to right for all
columns, where the negative slope indicates a gradual
decrease in the remainingWTwith time. The variation seen
in the estimated results is due to the addition of noise in the
data. The average MAE for all the sixteen columns is
15 × 10−3 mm.

One of the selected points was around the center of the
elbow (Figure 5(b)) and others were towards the elbow
arms from both ends (a, c). Moreover, the remaining WT is
shown for same row on the pipe but different columns,
i.e., C1-3 and C8-3 to demonstrate that WT has higher
values outside the elbow section as compared with the
elbow, which is due to manufacturing.

Figure 5(d)–(f) shows the errors between measured
and estimated WT values which has the maximum
instantaneous value of 16 × 10−3 mm recorded at C13-6
corresponding to 0.27% of the nominal WT. Regarding
estimation performance of the NN, it is worth mentioning
that this was the maximum error recorded out of all the 112
points. The MAE for C1-3, C8-3, and C13-6 was recorded as
4.8, 3, and 7.8 × 10−3 mm, respectively.

These results show that the characteristics of the pipe
corrosion can be thoroughly analyzed by using NN
modeling, as seen from the above results. The findings
suggest that a unique NN model could be developed for a
specific pipe with better understanding of the elbow sec-
tion, if all necessary data obtained from the principle of
electric field mapping are available.

6 Conclusions

This paper presented first results of ANNmodelling for wall
loss in SS 316L elbow running saline water with known
concentration and flow velocity. The measurement setup
consisted of electric field mapping (EFM) pins to measure
voltage and current readings, and temperature sensors.
These observations were recorded for a period of 20 days
andwere used to train and test theANNmodel for corrosion
modeling. A detailed chemical andmicroscopic analysis of
scales formed on the internal surface was also performed.
The maximumMAE averaged over the entire elbow section
was recorded as 15 × 10−3 mm, which is 0.25% of the
nominal WT.

Future work will be focused on removing noise from
the output (estimated WT) and also to extend the model to
other flow and concentration values.
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